
Computers in Human Behavior 120 (2021) 106746

Available online 15 February 2021
0747-5632/© 2021 Elsevier Ltd. All rights reserved.

Full length article

Applying computational analysis of novice learners’ computer
programming patterns to reveal self-regulated learning, computational
thinking, and learning performance

Donggil Song a, Hyeonmi Hong b,*, Eun Young Oh c

a Instructional Systems Design and Technology, Sam Houston State University, Huntsville, TX, USA
b Elementary Education Research Institute, Teachers College, Jeju National University, Jeju, South Korea
c Center for Languages and Intercultural Communication, Rice University, Houston, TX, USA

A R T I C L E I N F O

Keywords:
Self-regulated learning
Computational thinking skills
Computer education
Computational analysis
Computer programming

A B S T R A C T

Educational research on predicting learners’ computer programming performance has yielded practical impli-
cations that guide task designs in computer education. There have been attempts to investigate learners’ com-
puter programming patterns using high-frequency and automated data collection. This approach can be
considered as process-based analysis as opposed to outcome-based analysis (i.e., the use of test or exam scores).
In this process-based approach to investigate learners’ computer programming process, we included two critical
constructs in our research, self-regulated learning and computational thinking skills. We aimed to identify
learners’ computer programming patterns in the context that novice students learn a computer programming
language, Python, in an online coding environment. We examined the relationships between the learners’ coding
patterns, self-regulated learning, and computational thinking skills. Initially, we adopted a traditional approach
with the aggregate data of learners’ computer programming behaviors. We then utilized a computational ana-
lytics approach to learner performance, self-regulated learning, and computational thinking skills, with ever-
changing computer programming patterns. In our initial approach, the indicators of aggregate computer pro-
gramming data were not associated with learners’ learning performance and computational thinking skills. In the
computational analysis approach, many indicators revealed significant differences between the identified pat-
terns regarding computational thinking skills and self-regulated learning. Recommendations about the use of
programming log data analysis methods and future scaffolding for computer programming learners are
addressed.

Public attention has been drawn to computer programming educa-
tion since the 1980s (Soloway et al., 1982). These days, since there are
many professional areas that require programming knowledge and
skills, computer programming or coding is considered as a skill needed
by different types of professionals, not just computer programmers, but
also engineers, data scientists, economists, and education analysts. Still,
computer programming education is arguably lagging behind the soci-
etal demand for more computer programmers (Giannakos et al., 2017).

Educational research on predicting learners’ computer programming
performance has yielded implications that guide the identification of at-
risk students and learner scaffolding in computer education (e.g., Hall
et al., 2006; Yukselturk & Bulut, 2005). Many of these efforts focus on
learning outcomes using quizzes, tests, and exams as a knowledge

indicator. When we focus on learners’ outcome-based performance, it
might be challenging to understand their authentic learning process;
that is, changes in computer programming learning over time. Thus,
monitoring learners’ programming behaviors to understand their
genuine learning process is one of the significant research topics in
computer science education (Azcona et al., 2019; Fields et al., 2016).

One of the difficulties in this research area is the challenging data
collection process. Each individual learner needs to have their own
machine equipped with a coding environment/software, usually in a
computer lab or at home. Researchers should be able to retrieve
learners’ programming behaviors from their devices. Online code re-
positories, such as GitHub (https://github.com/), have made this data
collection process more comfortable and manageable. On these online

* Corresponding author.
E-mail addresses: donggil.song@gmail.com (D. Song), hongspiderweb@gmail.com (H. Hong), oh@rice.edu (E.Y. Oh).

Contents lists available at ScienceDirect

Computers in Human Behavior

journal homepage: http://www.elsevier.com/locate/comphumbeh

https://doi.org/10.1016/j.chb.2021.106746
Received 14 August 2020; Received in revised form 17 October 2020; Accepted 11 February 2021

https://github.com/
mailto:donggil.song@gmail.com
mailto:hongspiderweb@gmail.com
mailto:oh@rice.edu
www.sciencedirect.com/science/journal/07475632
https://http://www.elsevier.com/locate/comphumbeh
https://doi.org/10.1016/j.chb.2021.106746
https://doi.org/10.1016/j.chb.2021.106746
https://doi.org/10.1016/j.chb.2021.106746
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chb.2021.106746&domain=pdf

Computers in Human Behavior 120 (2021) 106746

2

repositories, learners’ codes are stored whenever they upload their
codes while they are programming. Still, because it all depends on the
learner’s upload decision, the time points of data collection could be
different for each student and each task. An alternative way to collect
learners’ coding data and accommodate the learners’ programming
process, online coding environments have been used (e.g., Price et al.,
2019). Although online environments might not fully support all func-
tions and features of a programming language, it would be enough to
support novice programmers to learn the basics of coding.

Another crucial consideration in computer programming education
research is data analysis methods. Traditionally, instructional methods
and learners’ pre and posttest scores have been frequently investigated
in this field (Bishop-Clark et al., 2006). Along with test-based outcome
measures, there have been attempts to investigate learners’ coding styles
and patterns (Watson et al., 2013, 2014). Specifically, due to
high-frequency and automated data collection, novel analysis ap-
proaches and techniques have been offered new insights into the com-
puter programming learning process and individual learner’s patterns
and behaviors (e.g., Blikstein et al., 2014; Fields et al., 2016).

In this study, focusing on a learning process-based analysis approach,
we aimed to analyze learners’ computer programming patterns. The
research context includes how novice students learn a computer pro-
gramming language, Python, in an online coding environment. We
investigated the relationships between the learners’ coding patterns and
their learning performance. In addition, we subsequently aim to
contribute to the field by adding learners’ self-regulated learning aspects
and computational thinking skills into the current findings in the
literature.

1. Literature review

Computing education researchers have focused on learners’ com-
puter coding processes itself along with their performance (Blikstein
et al., 2014; Watson et al., 2014). This approach can be considered as
process-based analysis as opposed to outcome-based analysis. Mostly,
the process-based analysis includes computational techniques to un-
derstand learners’ learning status and monitor learners’ behaviors and
performance in the field of computer programming education. This
trend also provides for the exploration of data-driven approaches, where
the log data of learners’ programming behaviors are available.

The primary potential of process-based analysis is that it would be
able to guide and scaffold learners. This is because their ever-changing
performance and behaviors would be monitored and analyzed without
having to administer lengthy tests or exams. That is, the learners’
computer programming behavior can be an indicator of their learning
performance and, at the same time, their performance as an artifact.
Thus, researchers have become increasingly interested in analyzing
learners’ programming log data as they work on computer programming
tasks (Fields et al., 2016; Liu et al., 2017).

1.1. The programming process

To understand learners’ computer programming process, a series of
research focuses on learners’ coding mistakes and their time to fix their
errors (e.g., Altadmri & Brown, 2015, pp. 522–527). Learners’ errors can
be divided into syntactic (i.e., programming language’s grammatical
rules) and semantic (i.e., program logic or algorithms) errors. Focusing
on learners’ programming process data, Carter et al. (2015) suggested
the Normalized Programming State Model (NPSM), which predicts
learners’ performance. NPSM includes syntactic and semantic correct-
ness of learners’ computer programs at any given point in time. Because
semantic correctness is challenging to determine precisely, the re-
searchers used unknown status; thus, a student’s programming solution
at a particular time point can be assigned to one of the four states: (1)
syntactically correct and semantically incorrect, (2) syntactically
incorrect and semantically incorrect, (3) syntactically correct and

semantically unknown, and (4) syntactically incorrect and semantically
unknown. The researchers collected 140 undergraduate students’ pro-
gramming log data and their course grades. As a predictor, NPSM was
compared with other metrics, such as Error Quotient (Jadud, 2006) and
Watwin Score (Watson et al., 2013), to estimate students’ performance.
Overall, the linear regression models with the selected time points by the
researchers revealed that NPSM showed a decent performance when
predicting students’ individual assignment grades and final grades
(Carter et al., 2015). As such, learners’ programming process can be
utilized as a predictor of their performance.

While this line of research showed a moderate performance when
predicting learning outcomes, it has a limitation when selecting a spe-
cific data point or time point to extract a measure of dynamic and ever-
changing computer programming behaviors due to the limited number
of data snapshots. There have been studies to overcome this limitation.
Blikstein et al. (2014) compared different approaches of analysis density
– from the regression of aggregate data and further disaggregation of the
data to identify learners’ computer programming patterns when pre-
dicting learning performance. The researchers collected undergraduate
students’ code snapshots of seven computer programming assignments
and calculated the size and frequency of code updates. In their regres-
sion analysis, the averaged magnitude of the code updates did not show
a significant relationship with course performance. When they changed
their approach from the average size to the clusters of different time
points (four and twelve) per assignment, the results showed a small ef-
fect size when predicting course performance. These approaches focused
solely on the size dimension of students’ codes. Then, the researchers
added a frequency aspect into their dataset, which is a type of curve as
opposed to aggregate data. Using standardization and normalization
processes, they identified six different patterns of code updates, from the
lowest code change to the greatest change. When they compared these
six groups with the students’ course performance, there was a significant
relationship; specifically, the students who changed their programming
patterns more achieved higher grades in their course (Blikstein et al.,
2014). This analysis approach with fine-grained data shows a clearer
view of the learners’ coding process than the analysis with aggregate
data does. The approach has shed light on identifying significant im-
plications in computing education.

1.2. Towards scaffolding

One of the central reasons why computing education researchers
have taken great interest in analyzing learners’ coding patterns and their
relationships with learning performance is to find an optimal way to
provide scaffolds for the learner. Computing educators desire to design
an appropriate intervention to meet specific instructional goals when
teaching computer programming.

An initial step for designing scaffolds is to identify the difficulty of
programming tasks. Due to the vast amount of tasks and different types,
most importantly, the relativity of difficulty depending on each learner,
researchers have investigated how to detect the difficulty of tasks
automatically. As an exploratory attempt, Ihantola et al. (2014) exam-
ined learner aspects (e.g., prior coding experience) and different metrics
of code snapshots (e.g., time, lines of code). It was found that the time
spent on an assignment and the size of coding (e.g., events, keystrokes)
were significant factors when determining the difficulty of a computer
coding task. Still, this area needs further investigation.

There are practical approaches to support learners by giving prompts
or hints when they are working on computer programming. Price et al.
(2019) examined the quality of data-driven algorithms that were
designed to provide code hints for learners while programming. Auto-
matically or when a learner requests a hint, these algorithms analyze the
learner’s current code state and provide a useful example code or
recommendation for the learner. The researchers invented an automatic
evaluation framework (called QualityScore) and confirmed its reliability
using human expert evaluation results. Their framework could

D. Song et al.

Computers in Human Behavior 120 (2021) 106746

3

differentiate the quality of each code hinting algorithm.
While these attempts have achieved modest success in supporting

learners’ performance, we still have challenges contributing to their
actual learning process. First, the narrow focus on computer program-
ming performance (e.g., task’s difficulty, a certain code status at a time
point) might overlook the crucial aspects of learning, such as learners’
motivation and metacognition. Second, the mechanical coding guides
and hints might pretermit the learners’ ultimate learning goals, such as
enhancing algorithmic and logical thinking skills. This is the main
reason for us to include two critical constructs in our research, self-
regulated learning and computational thinking skills.

1.3. Psychological traits

There has been an argument that learners’ psychological or back-
ground traits are not directly associated with their computer program-
ming behaviors, and psychological indicators might not reflect the
changes in computer programming and coding patterns (Watson et al.,
2014). We acknowledge the limitations of learners’ psychological in-
dicators in relation to their computer programming process. However, it
can be argued that we should be revisiting the ultimate goals of com-
puter education, which is not merely the improvement of computer
coding skills (Schulte, 2013). One of the essential goals is that computer
coding can be considered as a learning method to improve computa-
tional thinking skills (Voogt et al., 2015). Most importantly, as computer
coding education extends to non-major students in online learning en-
vironments, many of the coding lessons have adopted self-paced
learning modes. Thus, we argue that learners’ self-regulated learning
should also be included in the discussion of computer programming
pattern analysis.

1.4. Computational thinking skills

Computational thinking can be defined as it “involves solving
problems, designing systems, and understanding human behavior, by
drawing on the concepts fundamental to computer science” (Wing,
2006, p. 33). Lu and Fletcher (2009) described computational thinking
as a conceptual way to solve real problems through thinking systemat-
ically, correctly, and efficiently about information and tasks. Other
definitions have their roots in algorithmic thinking, abstraction,
decomposition, generalization and pattern recognition, data represen-
tation (Burbaitė et al., 2018), and even creative and critical thinking
(Korkmaz et al., 2017). Following these conventional definitions of the
term, we define computational thinking as thought processes that
contain knowledge, skills, and attitudes that are based on a computer
system, which is necessary to thoroughly understand and fully utilize a
computer system to solve problems.

There have been sizeable attempts to improve learners’ computa-
tional thinking skills (e.g., Atmatzidou & Demetriadis, 2016; Gardeli &
Vosinakis, 2017). In addition, researchers investigated predictors of
computational thinking skills. Durak and Saritepeci (2018) investigated
secondary school students’ computational thinking skills and reported
that the success indicators of different classes (e.g., math, science, in-
formation technologies) predict the participants’ computational
thinking skills. Still, the relationships between computational thinking
skills and the computer programming process are under-explored.

1.5. Self-regulated learning

A similar under-exploration has been found in the field of self-
regulated learning research. Self-regulation generally refers to “self-
generated thoughts, feelings, and actions that are planned and cyclically
adapted to the attainment of personal goals” (Zimmerman, 2000, p. 14).
Although the concept of monitoring computer programming behavior
has a long history (Altadmri & Brown, 2015, pp. 522–527), few studies
addressed self-regulated learning in relation to computer programming

behavior. Instead, there have been attempts to increase students’ com-
puter programming performance by scaffolding their self-regulated
learning (e.g., Alharbi et al., 2012; Brito et al., 2011, pp. 1–9; Kumar
et al., 2005; Pedrosa et al., 2016). In addition, research on relationships
between self-regulated learning and learning performance has been
frequently conducted. Chen (2002) examined the relationships between
MSLQ (Motivated Strategies for Learning Questionnaire; Pintrich &
DeGroot, 1990) scores and 197 undergraduate students’ learning per-
formance on computer concepts. The effort-regulation component of
MSLQ has a significant relationship with learning performance. Yuk-
selturk and Bulut (2005) measured undergraduate 38 students’
self-regulated learning using MSLQ and computer programming
achievements. It was found that among the MSLQ components,
self-efficacy and self-regulation explained the significant amount of the
variances of computer programming performance (28.9% and 27.7%,
respectively). Cigdem (2015) investigated 267 military vocational col-
lege students’ self-regulated learning skills and computer programming
achievements. The self-efficacy component was correlated with pro-
gramming achievement (r = 0.181, p < .01). Similar results were found
in other studies (Bergin et al., 2005; Echeverry et al., 2018). Thus, it
seems that there is an established relationship between self-regulated
learning and learning performance in computer education.

Because self-regulated learners “plan, set goals, organize, self-
monitor, and self-evaluate at various points during the process of
acquisition” (Zimmerman, 1990, p. 4), learners’ self-regulated learning
might be revealed in their computer programing process. A few studies
were conducted to examine learners’ programming codes and reveal
their relationship with self-regulated learning. Castellanos et al. (2017)
collected 205 undergraduate students’ computer programming codes
and extracted source code metrics of length (e.g., the count of lines) and
complexity (e.g., amount of loops, amount of if-else clauses), and Hal-
stead metrics (e.g., effort, time, difficulty). The results show that the
length indicator is positively correlated with programming performance
and self-regulated learning measured through MSLQ. However, the
changes in learners’ codes and coding patterns were not examined in
these studies.

1.6. This study

The significant learning-related constructs (i.e., self-regulated
learning and computational thinking skills) were under-investigated in
terms of the relationship with the learners’ computer programming
process. In this study, we analyzed a continuous stream of learners’
codes to identify their learning patterns, which could possibly be related
to their self-regulated learning, computational thinking, and learning
performance. Our primary research question is, “Is the learners’ com-
puter programming process related to self-regulated learning, compu-
tational thinking skills, and learning performance?” Initially, we were
interested in traditional approaches to learning performance and
learning-related constructs (i.e., self-regulated learning and computa-
tional thinking skills) with the aggregate data of learners’ computer
programming. This approach intends to identify a predictive model of
learner performance. Then, we focused on computational analytics ap-
proaches (Song, 2018) to the performance and those constructs with
ever-changing learner behaviors, patterns, and meaningful trajectories
in students’ computer programming log data.

2. Methods

2.1. Participants and the context

One hundred thirty-eight students enrolled in a course, Creative
Extracurricular Activities and Software, which had five sections for se-
nior undergraduate students from Teachers College (i.e., preservice
teachers) at a mid-sized public university in an urban area in South
Korea. The course is a face-to-face course, which meets one time (a 3-h

D. Song et al.

ComputersinHumanBehavior120(2021)106746

4

Table 1
The correlation table of computer programming indicators and learner factors.

Computer Programming Performance Computational Thinking Skills MSLQ

Chosen-
Task

Trial-
Run

Successful
Task

Coding
Time

Final Grade Total 1.
Creativity

2. Algorithmic
Thinking

3.
Cooperativity

4. Critical
Thinking

5. Problem-
solving

Total 1. Self-
efficacy

2. Intrinsic
Value

3. Test-
anxiety
Free

4. Cognitive
Strategy

5. Self-
regulation

Chosen-Task 1.00
Trial-Run b

.53
1.00

Successful Task b

.82

b

.46
1.00

Coding Time b

.50

b

.66

b

.40
1.00

Final Grade -.15 -.07 -.09 -.10 1.00
Computational

Thinking Total
.07 -.03 -.04 -.15 -.14 1.00

1. Creativity .12 .09 .02 -.04 -.11 b

.77
1.00

2. Algorithmic
Thinking

.08 -.09 -.04 -.19 -.02 b

.80

b

.51
1.00

3. Cooperativity -.04 -.05 -.14 .01 -.12 b

.57

b

.36

b

.33
1.00

4. Critical
Thinking

.04 .00 .01 -.11 -.08 b

.73

b

.71

b

.57

a

.20
1.00

5. Problem-
solving

.02 -.03 .02 -.11 -.02 b

.29
-.09 .05 -.04 -.11 1.00

MSLQ Total a

.21

a

.24
.14 .13 -.12 b

.55

b

.65

b

.42

b

.30

b

.61
-.18 1.00

1. Self-efficacy a

.24
.15 .15 .05 .12 b

.55

b

.59

b

.46
.18 b

.56
-.04 b

.82
1.00

2. Intrinsic Value .14 .17 .06 .14 .16 b

.54

b

.56

b

.33

b

.34

b

.47
.03 b

.82

b

.74
1.00

3. Test-anxiety
Free

.10 .18 .08 .19 .07 -.19a .05 -.12 -.18 .08 b

-.40

a

.23
.01 .01 1.00

4. Cognitive
Strategy

.16 a

.19
.10 .10 .00 b

.46

b

.54

b

.34

b

.32

b

.45
-.16 b

.83

b

.49

b

.55
.09 1.00

5. Self-
regulation

.06 .19 .09 .04 .09 b

.38

b

.43

b

.33

a

.24

b

.47

a

-.23

b

.71

b

.40

b

.37
.09 b

.64
1.00

a Correlation is significant at the 0.05 level (2-tailed).
b Correlation is significant at the 0.01 level (2-tailed).

D. Song et al.

Computers in Human Behavior 120 (2021) 106746

5

course) a week. Each student was asked to solve programming problems
during a 15-week semester. Excluding the individuals who did not
participate in the measurement process of self-regulated learning and
computational thinking skills, 105 students who completed all computer
programming tasks and surveys were included in the data analysis.

The course grades include students’ class participation and different
types of projects, such as computer coding-related extracurricular ac-
tivity design and group discussion projects. The computer coding tasks
were considered as class participation, and regardless of the successful
completion of tasks, students received class participation scores when
they accessed the online computer programming environment with their
log-in credentials. All 105 subjects in this study participated in all
computer programming tasks. Therefore, the course grades do not
directly reveal participants’ computer programming knowledge, skills,
or task performance, but mainly represent their course achievements in
their different types of projects, which were still related to computer/
software use and computer programming for their future students.

2.2. Data collection

We focus exclusively on differences between learners’ successive
code compilation attempts in the online environment. We instrumented
the online Python coding environment to capture snapshots of students’
codes when they run (i.e., trial-run) their programs. This environment
collects learners’ codes in real-time when they compile and run their
codes. The data consisted of programming tasks completed by 105 stu-
dents, which include 23,099 times of trial-run. Participants completed
53 computer programming tasks during a 15-week period. Three tasks
out of 53 were not used due to the nature of the tasks; for example, the
first task included the overview of this programming project, and
another task was a series of quick reviews; thus, 50 tasks were included
in the data analysis.

To measure participants’ self-regulated learning, MSLQ (Pintrich &
DeGroot, 1990) was used. This instrument has been widely adopted to
measure the levels of self-regulated learning in the computing education
research field (e.g., Chen, 2002; Sun & Hsu, 2019; Yukselturk & Bulut,
2005). MSLQ consists of 44 items designed to measure self-efficacy,
intrinsic value, test anxiety, cognitive strategy use, and self-regulation

Table 2
Anova results of clustered groups (N = 105).

Clustering Factors Measures Clustered Groups F Partial
η2

Post Hoc

a b c d

Chosen-Task-3 N 57 27 21 –
MSLQ
– Self-efficacy

4.69 (1.10) 4.17 (.93) 4.12 (.89) – 3.643* .067 Not found

Chosen-Task-4 N 6 51 27 21
MSLQ
– Total

5.40 (.75) 4.83 (.60) 4.63 (.56) 4.60 (.66) 3.252* .088 a > c
a > d

MSLQ
– Self-efficacy

5.52 (.70) 4.59 (1.10) 4.17 (.93) 4.12 (.89) 4.056* .108 a > c
a > d

Trial-Run-3 N 10 19 76 –
MSLQ
– Total

5.26 (.65) 4.89 (.58) 4.67 (.61) – 4.569* .082 a > c

MSLQ
– Intrinsic value

5.17 (1.03) 5.15 (.81) 4.71 (.90) – 2.613* .049 Not found

MSLQ
– Cognitive strategy

5.72 (.64) 5.17 (.61) 5.05 (.72) – 4.102* .074 a > c

MSLQ
– Self-regulation

5.15 (.72) 4.47 (.74) 4.52 (.68) – 3.782* .069 a > b
a > c

Time-3 N 18 79 8 –
CT
– Total

4.50 (.54) 4.54 (.65) 3.88 (.66) – 3.965* .072 b > c

CT
– Creativity

5.55 (.73) 5.37 (.69) 4.30 (.76) – 9.699** .160 a > c
b > c

CT
– Algorithmic thinking

4.21 (1.01) 4.43 (1.15) 3.21 (1.14) – 4.288* .078 b > c

CT
– Critical thinking

4.98 (.99) 4.95 (.99) 3.95 (.86) – 3.866* .070 a > c
b > c

MSLQ
– Total

5.10 (.66) 4.75 (.58) 4.14 (.64) – 7.416* .127 a > c
b > c

MSLQ
– Self-efficacy

4.80 (1.04) 4.47 (1.00) 3.39 (.92) – 5.575* .099 a > c
b > c

MSLQ
– Cognitive strategy

5.44 (.59) 5.14 (.69) 4.39 (.81) – 6.486* .113 a > c
b > c

MSLQ
– Self-regulation

5.01 (.80) 4.55 (.64) 3.82 (.58) – 9.010** .150 a > b
a > c
b > c

Time-4 N 19 8 72 6
CT
– Creativity

5.48 (.73) 5.33 (.86) 5.36 (.70) 4.34 (.88) 4.077* .108 a > c
a > d

MSLQ
– Total

5.01 (.66) 4.89 (.86) 4.74 (.56) 4.14 (.70) 3.203* .087 a > d

MSLQ
– Cognitive strategy

5.40 (.57) 5.18 (.93) 5.12 (.69) 4.41 (.82) 3.066* .083 a > d

MSLQ
– Self-regulation

4.84 (.79) 4.69 (1.05) 4.54 (.63) 3.94 (.60) 2.711* .075 Not found

Success-3 N 35 43 27 –
Grades 89.49 (2.93) 89.37 (3.14) 87.48 (4.13) – 3.366* .062 Not found

*p < .05.
**p < .001.

D. Song et al.

Computers in Human Behavior 120 (2021) 106746

6

on a 7-point scale, ranging from 1 (not at all true of me) to 7 (very true of
me). In addition, to measure participants’ computational thinking skills,
we adopted CTS (Computational Thinking Scales) (Korkmaz et al.,
2017), which has been used in recent computer education research (e.g.,
Doleck et al., 2017; Durak & Saritepeci, 2018). Finally, to measure the
learners’ course performance, their final grades were used.

2.3. Data analysis

We conducted a series of analyses adopting a traditional approach.
The learners’ coding pattern indicators are the number of chosen tasks,
overall code-run trials, average code-run trials per task, the number of
successful tasks, and time spent per task. Although the participation in
the coding tasks (i.e., logging in each task) was the course requirement,
trial-run attempts or successful completion of tasks were not graded.
Thus, the participants were able to focus on a specific task on their own
or skip some tasks without any restriction. This is the reason for having
the number of chosen tasks as their coding pattern indicator. For the
same reason, overall code-run trials or time spent per task varied
depending on students’ coding behaviors, styles, and patterns. We
analyzed the relationships between these coding pattern indicators and
learner constructs (i.e., self-regulated learning, computational thinking,
and learning performance). Using computational analysis, we demon-
strate learners’ programming patterns. Instead of combining or aver-
aging indicators, we utilized computational techniques to identify the
patterns of learners’ coding behaviors and find relationships between
the patterns and learner constructs. In this approach, data can represent
each learner’s trial-run attempt at different points in time as they
progress towards the goal of each programming task.

3. Results

3.1. Initial approach

In the initial analysis, we included the number of chosen tasks
(Chosen-Task), overall code-run trials (Trial-Run), the number of suc-
cessful tasks (Successful Task), and time spent for tasks (Coding Time).
We analyzed the relationships between these coding pattern indicators
and learner constructs (i.e., self-regulated learning, computational
thinking, and learning performance).

3.2. Correlation

We calculated correlation coefficients of all relevant variables (see
Table 1). All four indicators of computer coding were not associated
with learners’ grades or computational thinking skills. Two indicators,
Chosen-Task (r = 0.21) and Trial-Run (r = 0.24) were correlated with
MSLQ (both ps < .05). Specifically, Chosen-Task was positively corre-
lated with self-efficacy (r = 0.24, p < .05), and Trial-Run was positively
related with cognitive strategy (r = 0.19, p < .05).

3.3. Regression analysis

We conducted a series of regression analyses to identify the re-
lationships between computer programming indicators and learner
factors. Similar to the correlation results, when learners’ final grades
and computational thinking levels were the outcome variables, the
prediction power of four coding indicators were not statistically mean-
ingful, F(4,100) = 0.72, p = .58, R2 = 0.028, F(4,100) = 2.28, p = .07,
R2 = 0.084, respectively.

When MSLQ was the outcome variable, the regression models pre-
dicted the dependent variable significantly well. We tested different
combinations of four coding indicators as independent variables, the
Trial-Run indicator showed a greater prediction significance, F(1,103)
= 6.35, p = .013, R2 = 0.058, β = 0.0009, intercept = 4.58. Another
model is the combination of Chosen-Task and Trial-Run, F(2,102) =

3.66, p = .029, R2 = 0.067, MSLQ is equal to 4.44 + .01 (Chosen-Task) +
0.0007 (Trial-Run). However, when all four coding indicators were
predictors, the prediction was not significant, F(4,100) = 2.04, p = .09,
R2 = 0.075.

3.4. Computational approach

To have a more in-depth look at the learners’ computer coding be-
haviors, we analyzed their trial-run log data without combining or
aggregating indicators. The first indicator is Chosen-Task, the second
Trial-Run, the third Time, and the fourth Success. Each indicator of a
participant could be represented as a multidimensional vector. For
example, when a learner tested their Python codes (i.e., trial-run) 10
times in Task 1, 12 times in Task 2, 9 times in Task 3, …and 5 times in
Task 50, the vector of Trial-Run for the student would be “(10, 12, 9, …,
5).” We used K-Means as a clustering method. We added the K-value
after the indicator name; for example, when we used Chosen-Task as an
indicator, and the K-value is 3, then the name was Chosen-Task-3. Thus,
Chosen-Task-4 means we categorized learners’ chosen-task indicators
into 4 groups (i.e., clusters). Among these clustering processes, three
attempts were not included in further analyses due to the lack of cases in
a cluster. For example, in Trial-Run-4 (i.e., four clusters were identified
using the trail-run indicators by the algorithm), the case numbers of
each cluster are 86, 13, 5, and 1. Because the Trial-Run-5 and Time-5
had the same issue, further analyses did not proceed with these clusters.

3.5. Computational thinking skills

Most of the clustering approaches were not able to find significant
differences between groups with regard to computational thinking skills
– Chosen-Task-3: F(2,102) = 0.926, p = .400, Chosen-Task-4: F(3,101)
= 1.772, p = .157, Trial-Run-3: F(2,102) = 0.427, p = .653, Success-3: F
(2,102) = 2.809, p = .065, Success-4: F(3,101) = 1.961, p = .125, and
Success-5, F(4,100) = 1.610, p = .178. However, the Time indicator
found significant differences between groups in computational thinking
skills (see Table 2). Time-3 showed a significant difference between
three clusters, F(2,102) = 3.965, p = .022, Partial η2 = 0.072, specif-
ically, Creativity: F = 9.699, p < .001, Partial η2 = 0.160, Algorithmic
Thinking Skills: F(2,102) = 4.288, p = .016, Partial η2 = 0.078, and
Critical Thinking F(2,102) = 3.866, p = .024, Partial η2 = 0.070.
Although Time-4 did not show a difference between four clusters in
Computational Thinking Skills, F(3,101) = 1.420, p = .241, there was a
significant difference only in the Creativity dimension, F(3,101) =
4.077, p = .009, Partial η2 = 0.108.

3.6. MSLQ

As shown in Table 2, many indicators showed significant differences
between clusters regarding MSLQ. Chosen-Task-4 revealed a statistically
significant difference between four clusters in MSLQ Total, F(3,101) =
3.252, p = .025, Partial η2 = 0.088, specifically, Self-efficacy: F(3,101)
= 4.056, p = .009, Partial η2 = 0.108. Although Chosen-Task-3 did not
show a significant difference in MSLQ Total, F(2,102) = 2.473, p = .089,
there was a significant difference between three clusters in Self-efficacy,
F(2,102) = 3.643, p = .030, Partial η2 = 0.067. However, the post-hoc
test was not able to reveal any meaningful differences between each
pair of groups. This conflict is discussed in the limitation section.

Trial-Run-3 showed a difference in MSLQ, F(2,102) = 4.569, p =
.013, Partial η2 = 0.082, specifically, Cognitive Strategy: F(2,102) =
4.102, p = .019, Partial η2 = 0.074 and Self-regulation: F(2,102) =
3.782, p = .026, Partial η2 = 0.069.

The Time indicator also revealed a difference in MSLQ, Time-3: F
(2,102) = 7.416, p = .001, Partial η2 = 0.127. Specifically, Self-efficacy:
F(2,102) = 5.575 p = .005, Partial η2 = 0.099, Cognitive Strategy: F
(2,102) = 6.486, p = .002, Partial η2 = 0.113, and Self-regulation: F
(2,102) = 9.010, p < .001, Partial η2 = 0.150. In addition, Time-4

D. Song et al.

Computers in Human Behavior 120 (2021) 106746

7

showed a difference between four clusters in MSLQ Total, F(3,101) =
3.203, p = .026, Partial η2 = 0.087. Specifically, Cognitive Strategy: F
(3,101) = 3.066, p = .031, Partial η2 = 0.083, and Self-regulation: F
(3,101) = 2.711, p = .049, Partial η2 = 0.075. Because this Self-
regulation component analysis showed a violation of homogeneity
assumption (Levene Statistics = 3.212, p = .026), the Games-Howell was
used for the post-hoc test.

The Success indicator did not reveal any meaningful differences,
Success-3: F(2,102) = 0.228, p = .796, Success-4: F(3,101) = 0.171, p =
.916, Success-5: F(4,100) = 0.578, p = .680.

3.7. Grades

While most of the clustered groups did not show any statistically
significant differences in grades, one meaningful case was found. When
the data were clustered by the participants’ successful coding tasks into
three groups, there was a significant grade difference between groups, F
(2,102) = 3.366, p = .038, Partial η2 = 0.062. However, the post-hoc test
was not able to reveal any meaningful differences between each pair of
groups. This is also addressed in the limitation section.

4. Discussion

In this study, we used a self-paced online learning environment to
capture snapshots of students’ code during Python programming tasks
for the extracurricular activities and software course in a teacher edu-
cation program. We used both aggregate and disaggregate data ap-
proaches to learners’ computer programming patterns to identify the
relationships with self-regulated learning, computational learning skills,
and learning performance. The analysis of averaged indicators did not
reveal any significant associations except for the Trial-Run measure,
which showed its relationship with MSLQ scores. However, program-
ming patterns, when a computational technique (i.e., k-means) utilized,
revealed their relationships with self-regulated learning, computational
learning skills, and learning performance. This is partially consistent
with previous studies (e.g., Cigdem, 2015; Durak & Saritepeci, 2018;
Yukselturk & Bulut; 2005) in that computer programming learning is
related to self-regulated learning and computational thinking skills.

Since we have known that the time management aspect is closely
related to self-regulated learning (Wolters et al., 2017), it is an inter-
esting finding that the time spending patterns on specific coding tasks
were related to learners’ computational thinking skills, specifically the
creativity dimension. It should be noted that this does not mean the total
amount of time is related to creativity in computational thinking, as
shown in our correlation and regression analyses. Instead, students with
higher levels of creativity in computational thinking skills showed a
specific pattern of time investment on certain tasks. The time parameter
and temporal information could be an essential factor in the learning
process, which is fundamentally ever-changing. Although there was a
report that time management could be significant in computing educa-
tion (Chaudhary et al., 2016), the relationship between computational
thinking skills and time management has been under-explored. This
requires further investigation.

Three aspects of coding behaviors (i.e., Chosen-Task, Trial-Run, and
Time) were categorized into different groups that showed different
levels of self-regulated learning. This means that the patterns of task
selection, trial times on specific tasks, and time spent on specific tasks
might be indicators of self-regulated learning. Since we were not able to
intentionally design programming tasks with different characteristics,
future research is needed to differentiate the features of each task so the
learners’ coding patterns on which task reveal the different levels of self-
regulated learning.

Although limited, the patterns of successful tasks revealed the dif-
ferences in course performance. Learners who showed a specific pattern
of successful coding tasks achieved higher course grades than the other
pattern groups. Still, the patterns identified by the computational

algorithm were not labeled, characterized, or explained by the re-
searchers due to the complexity. The success of a task did not influence
the course grade because the coding tasks were the course participation
components, and any students who logged in the online coding envi-
ronment received the same points. Thus, it is quite interesting that
higher performers showed a specific successful completion pattern. Be-
sides, the success patterns did not reveal any differences in self-regulated
learning or computational thinking skills, and the total number of suc-
cessful tasks did not show any relationships with learning performance.
We suspect that there might be another construct to explain this result,
such as selective persistence (Prenzel, 1992). This warrants further
research.

Overall, our investigation of the coding process is consistent with
Castellanos et al. (2017), which showed the coding behavior (specif-
ically, the length of codes) was associated with self-regulated learning.
The difference between their results and ours is that we focused more on
coding as a process rather than codes as a product. Our purpose is not to
show any superiorities of an analysis approach over the other, but rather
to reveal that a fine-grained data analysis might uncover the previously
concealed relationships of learners’ learning process and patterns with
psychological indicators and learning performance. The fine-grained
data could maintain learners’ detailed trajectories throughout a
learning activity. The use of fine-grained data with the time parameter
to capture ever-changing learning patterns could offer novel insights
into learning analysis. More importantly, we aimed to produce, although
exploratory, a piece of theoretical evidence for the relationship of
computer coding patterns with self-regulated learning and computa-
tional thinking skills. The implication of this study is that averaged
predictors of learners’ computer programming processes are less effec-
tive at reflecting learning performance, self-regulated learning, and
computational thinking skills of the learners. Instead, the
non-aggregated process-based indicators offer a clearer image to reveal
those learner-side measures. It would be beneficial to utilize constantly
shifting data of the learning process and discover any hidden patterns in
the data (Blikstein et al., 2014), revealing relationships with existing
constructs that education researchers have built. By collecting a stream
of coding process data in an online coding program, we create oppor-
tunities to continuously assess their learning processes and progress.

If we identified clearer relationships between learners’ coding be-
haviors/patterns and psychological constructs in future research, further
investigations would demonstrate how these relationships can be used
to provide proper scaffolds for the learners considering not only the
better coding process and performance but also their current status of
self-regulation and computational thinking skills. For example, these
relationships would contribute to the field of programming hint, which
has a growing number of algorithms with data-driven approaches (Price
et al., 2019), such as supporting at-risk students in computer education
programs (Tabanao et al., 2011). Our future intention is to take one step
closer to providing individualized scaffolds that take into account not
only the learner’s codes but also learners’ motivation, metacognition,
cognitive strategy, algorithmic thinking skills. When scaffolding, the
system not only provides a guide for the next coding step but also en-
courages learners’ self-regulation process and facilitates their compu-
tational thinking. Automatic scaffolding should be influenced by
learner-dependent psychological factors (Song & Kim, 2020). This is
directly related to the computer education field of behavioral regulation,
which highlights the importance of encouraging students’ meta-
cognitive activities (see Mangaroska et al., 2018). This field is the area
where even expert human tutors might not be easily scaffolding com-
puter programming learners.

4.1. Limitations and future research

Our work has important limitations. First, our narrow focus on the
relationship with self-regulated learning and computational thinking
skills might overlook the programming content; that is, semantic and

D. Song et al.

Computers in Human Behavior 120 (2021) 106746

8

syntactic aspects of learners’ code. Different types of programming tasks
need to be designed to examine learners’ code contents in future studies.
Second, the difference in the patterns of coding size changes that other
researchers suggested (e.g., Blikstein et al., 2014) was not analyzed, and
their predictive power was not tested in this study. The reason for not
selecting the size approach was that most of the tasks were novice-levels,
so we considered that the overall size of each task was not meaningful.
More intentionally designed tasks should be studied in future research.
Third, learners’ codes were not analyzed qualitatively due to the
massive amount of data. Still, we acknowledge that there should be
sufficient information in their codes and qualitative approaches would
reveal the original patterns of learners’ programming behavior. More
efficient and feasible methods for qualitative analysis of learners’
computer codes are needed for future research. Last, the non-significant
results of post-hoc tests might be caused by the small effect sizes and the
uneven cases of each cluster. Empirical studies with a larger sample
would be required.

5. Conclusion

This study differs from previous computer programming education
research in three key ways. First, we presented a process model for
organizing the learners’ coding process. Second, we expanded the focus
of the coding process to include computational thinking skills and self-
regulated learning. Finally, we identified the relationships between
learners’ psychological constructs and the coding process.

Credit author statement

Donggil Song: Software, Validation, Methodology, Formal analysis,
Writing. Hyeonmi Hong: Investigation, Resources, Data Curation. Eun
Young Oh: Conceptualization, Methodology, Visualization.

Funding sources

This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.

Availability of data and material

The data will not be shared due to the confidentiality issues.

Declaration of competing interest

No potential conflict of interest was reported by the authors.

References

Alharbi, A., Henskens, F., & Hannaford, M. (2012). Student-centered learning objects to
support the self-regulated learning of computer science. Creative Education, 3(6),
773–783. https://doi.org/10.4236/ce.2012.326116

Altadmri, A., & Brown, N. C. C. (2015). 37 million compilations: Investigating novice
programming mistakes in large-scale student data. Proceedings of the 46th ACM Technical
Symposium on Computer Science Education (SIGCSE ’15), 4-7 March 2015, Kansas City,
MO, USA. New York, NY: ACM. https://doi.org/10.1145/2676723.2677258

Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ computational thinking
skills through educational robotics: A study on age and gender relevant differences.
Robotics and Autonomous Systems, 75, 661–670. https://doi.org/10.1016/j.
robot.2015.10.008

Azcona, D., Hsiao, I. H., & Smeaton, A. F. (2019). Detecting students-at-risk in computer
programming classes with learning analytics from students’ digital footprints. User
Modeling and User-Adapted Interaction, 29(4), 759–788. https://doi.org/10.1007/
s11257-019-09234-7

Bergin, S., Reilly, R., & Traynor, D. (2005). Examining the role of self-regulated learning
on introductory programming performance. Proceedings of the International Workshop
on Computing Education Research, 81–86. https://doi.org/10.1145/
1089786.1089794

Bishop-Clark, C., Courte, J., & Howard, E. V. (2006). Programming in pairs with Alice to
improve confidence, enjoyment, and achievement. Journal of Educational Computing
Research, 34(2), 213–228. https://doi.org/10.2190/CFKF-UGGC-JG1Q-7T40

Blikstein, P., Worsley, M., Piech, C., Gibbons, A., Sahami, M., & Cooper, S. (2014).
Programming pluralism: Using learning analytics to detect patterns in novices’
learning of computer programming. International Journal of the Learning Sciences, 23
(4), 561–599. https://doi.org/10.1080/10508406.2014.954750

Brito, S. R., Silva, A. S., Tavares, O. L., Favero, E. L., & Francês, C. R. L. (2011). Computer
supported collaborative learning for helping novice students acquire self-regulated
problem-solving skills in computer programming. Athens: Proceedings of the
International Conference on Frontiers in Education: Computer Science and Computer
Engineering (FECS). https://search.proquest.com/docview/1270655747.

Burbaitė, R., Drąsutė, V., & ̌Stuikys, V. (2018). Integration of computational thinking skills in
STEM-driven computer science education. Proceedings of the Global Engineering
Education Conference (EDUCON), 2018 IEEE (pp. 1824–1832). IEEE. https://doi.org/
10.1109/EDUCON.2018.8363456

Carter, A. S., Hundhausen, C. D., & Adesope, O. (2015). The normalized programming
state model: Predicting student performance in computing courses based on
programming behaviour. In Proceedings of the 11th annual Conference on international
computing education research (ICER 2015), 9-13 july 2015 (pp. 141–150). USA:
Omaha, Nebraska. https://doi.org/10.1145/2787622.2787710.

Castellanos, H., Restrepo-Calle, F., González, F. A., & Echeverry, J. J. R. (2017).
Understanding the relationships between self-regulated learning and students source
code in a computer programming course. In Proceedings of the 2017 IEEE frontiers in
education conference (FIE), 18-21 Oct. 20. Indianapolis: IEEE. https://doi.org/
10.1109/FIE.2017.8190467.

Chaudhary, V., Agrawal, V., Sureka, P., & Sureka, A. (2016). An experience report on
teaching programming and computational thinking to elementary level children
using lego robotics education kit. In Proceedings of the 2016 IEEE eighth international
conference on technology for education (T4E) (pp. 38–41). IEEE. https://doi.org/
10.1109/T4E.2016.016.

Chen, C. S. (2002). Self-regulated learning strategies and achievement in an introduction
to information systems course. Information Technology, Learning, and Performance
Journal, 20(1), 11–25. https://pdfs.semanticscholar.org/d92f/d0d0207191f
7806852f93c3f37d61a4438eb.pdf.

Cigdem, H. (2015). How does self-regulation affect computer-programming achievement
in a blended context? Contemporary Educational Technology, 6(1), 19–37. https://doi.
org/10.30935/cedtech/6137

Doleck, T., Bazelais, P., Lemay, D. J., Saxena, A., & Basnet, R. B. (2017). Algorithmic
thinking, cooperativity, creativity, critical thinking, and problem solving: Exploring
the relationship between computational thinking skills and academic performance.
Journal of Computers in Education, 4(4), 355–369. https://doi.org/10.1007/s40692-
017-0090-9

Durak, H. Y., & Saritepeci, M. (2018). Analysis of the relation between computational
thinking skills and various variables with the structural equation model. Computers &
Education, 116, 191–202. https://doi.org/10.1016/j.compedu.2017.09.004

Echeverry, J. J. R., Rosales-Castro, L. F., Restrepo-Calle, F., & González, F. A. (2018).
Self-regulated learning in a computer programming course. IEEE Revista
Iberoamericana de Tecnologias del Aprendizaje, 13(2), 75–83. https://doi.org/
10.1109/RITA.2018.2831758

Fields, D. A., Quirke, L., Amely, J., & Maughan, J. (2016). Combining big data and thick
data analyses for understanding youth learning trajectories in a summer coding
camp. In Proceedings of the 47th ACM technical symposium on computing science
education (pp. 150–155). https://doi.org/10.1145/2839509.2844631

Gardeli, A., & Vosinakis, S. (2017). Creating the computer player: An engaging and
collaborative approach to introduce computational thinking by combining
‘unplugged’ activities with visual programming. Italian Journal of Educational
Technology, 25(2), 36–50. https://www.learntechlib.org/p/183469/.

Giannakos, M. N., Pappas, I. O., Jaccheri, L., & Sampson, D. G. (2017). Understanding
student retention in computer science education: The role of environment, gains,
barriers and usefulness. Education and Information Technologies, 22(5), 2365–2382.
https://doi.org/10.1007/s10639-016-9538-1

Hall, D. J., Cegielski, C. G., & Wade, J. N. (2006). Theoretical value belief, cognitive
ability, and personality as predictors of student performance in object-oriented
programming Environments. Decision Sciences Journal of Innovative Education, 4(2),
237–257. https://doi.org/10.1111/j.1540-4609.2006.00115.x

Ihantola, P., Sorva, J., & Vihavainen, A. (2014). Automatically detectable indicators of
programming assignment difficulty. In Proceedings of the 15th annual conference on
information technology education (SIGITE/RIIT 2014), 15-18 October 2014 (pp.
33–38). Atlanta, GA, USA: ACM. https://doi.org/10.1145/2656450.2656476. New
York.

Jadud, M. C. (2006). Methods and tools for exploring novice compilation behaviour. In
Proceedings of the 2nd international workshop on computing education research (ICER
2006), 9-10 september 2006, canterbury, United Kingdom (pp. 73–84). New York:
ACM. https://doi.org/10.1145/1151588.1151600.

Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study of the
Computational Thinking Scales (CTS). Computers in Human Behavior, 72, 558–569.
https://doi.org/10.1016/j.chb.2017.01.005

Kumar, V., Winne, P. H., Hadwin, A. F., Nesbit, J. C., Jamieson-Noel, D., Calvert, T., &
Samin, B. (2005). Effects of self-regulated learning in programming. Proceedings of
the 5th IEEE International Conference on Advanced Learning Technologies (ICALT ʼ05),
383–387. https://doi.org/10.1109/ICALT.2005.131

Liu, Z., Zhi, R., Hicks, A., & Barnes, T. (2017). Understanding problem solving behavior
of 6–8 graders in a debugging game. Computer Science Education, 27(1), 1–29.
https://doi.org/10.1080/08993408.2017.1308651

Lu, J. J., & Fletcher, G. H. (2009). Thinking about computational thinking. ACM SIGCSE
Bulletin, 41(1), 260–264. https://doi.org/10.1145/1508865.1508959

Mangaroska, K., Sharma, K., Giannakos, M., Træteberga, H., & Dillenbourg, P. (2018).
Gaze-driven design insights to amplify debugging skills: A learner-centred analysis

D. Song et al.

https://doi.org/10.4236/ce.2012.326116
https://doi.org/10.1145/2676723.2677258
https://doi.org/10.1016/j.robot.2015.10.008
https://doi.org/10.1016/j.robot.2015.10.008
https://doi.org/10.1007/s11257-019-09234-7
https://doi.org/10.1007/s11257-019-09234-7
https://doi.org/10.1145/1089786.1089794
https://doi.org/10.1145/1089786.1089794
https://doi.org/10.2190/CFKF-UGGC-JG1Q-7T40
https://doi.org/10.1080/10508406.2014.954750
https://search.proquest.com/docview/1270655747
https://doi.org/10.1109/EDUCON.2018.8363456
https://doi.org/10.1109/EDUCON.2018.8363456
https://doi.org/10.1145/2787622.2787710
https://doi.org/10.1109/FIE.2017.8190467
https://doi.org/10.1109/FIE.2017.8190467
https://doi.org/10.1109/T4E.2016.016
https://doi.org/10.1109/T4E.2016.016
https://pdfs.semanticscholar.org/d92f/d0d0207191f7806852f93c3f37d61a4438eb.pdf
https://pdfs.semanticscholar.org/d92f/d0d0207191f7806852f93c3f37d61a4438eb.pdf
https://doi.org/10.30935/cedtech/6137
https://doi.org/10.30935/cedtech/6137
https://doi.org/10.1007/s40692-017-0090-9
https://doi.org/10.1007/s40692-017-0090-9
https://doi.org/10.1016/j.compedu.2017.09.004
https://doi.org/10.1109/RITA.2018.2831758
https://doi.org/10.1109/RITA.2018.2831758
https://doi.org/10.1145/2839509.2844631
https://www.learntechlib.org/p/183469/
https://doi.org/10.1007/s10639-016-9538-1
https://doi.org/10.1111/j.1540-4609.2006.00115.x
https://doi.org/10.1145/2656450.2656476
https://doi.org/10.1145/1151588.1151600
https://doi.org/10.1016/j.chb.2017.01.005
https://doi.org/10.1109/ICALT.2005.131
https://doi.org/10.1080/08993408.2017.1308651
https://doi.org/10.1145/1508865.1508959

Computers in Human Behavior 120 (2021) 106746

9

approach. Journal of Learning Analytics, 5(3), 98–119. https://doi.org/10.18608/
jla.2018.53.7

Pedrosa, D., Cravino, J., Morgado, L., & Barreira, C. (2016). Self-regulated learning in
computer programming: Strategies students adopted during an assignment. In
International conference on immersive learning, iLRN 2016: Immersive learning research
network (pp. 87–101). Springer. https://link.springer.com/chapter/10.1007/978-3-
319-41769-1_7.

Pintrich, R. R., & DeGroot, E. V. (1990). Motivational and self-regulated learning
components of classroom academic performance. Journal of Educational Psychology,
82(1), 33–40.

Prenzel, M. (1992). The selective persistence of interest. In K. A. Renninger, S. Hidi, &
A. Krapp (Eds.), The role of interest in learning and development (pp. 71–98). Lawrence
Erlbaum Associates, Inc. https://psycnet.apa.org/record/1992-97926-004.

Price, T. W., Dong, Y., Zhi, R., Paaßen, B., Lytle, N., Cateté, V., & Barnes, T. (2019).
A comparison of the quality of data-driven programming hint generation algorithms.
International Journal of Artificial Intelligence in Education, 29(3), 368–395. https://doi.
org/10.1007/s40593-019-00177-z

Schulte, C. (2013). Reflections on the role of programming in primary and secondary
computing education. Proceedings of the 8th Workshop in Primary and Secondary
Computing Education, 17–24. https://doi.org/10.1145/2532748.2532754

Soloway, E., Lochhead, J., & Clement, J. (1982). Does computer programming enhance
problem solving ability? Some positive evidence on algebra word problems. In
R. Seidel, R. Anderson, & B. Hunter (Eds.), Computer literacy (pp. 171–185).
Academic Press. https://doi.org/10.1016/B978-0-12-634960-3.50023-3.

Song, D. (2018). Learning Analytics as an educational research approach. International
Journal of Multiple Research Approaches, 10(1), 102–111. https://doi.org/10.29034/
ijmra.v10n1a6

Song, D., & Kim, D. (2020). Effects of self-regulation scaffolding on online participation
and learning outcome. Journal of Research on Technology in Education. https://doi.
org/10.1080/15391523.2020.1767525. Advance online publication.

Sun, J. C. Y., & Hsu, K. Y. C. (2019). A smart eye-tracking feedback scaffolding approach
to improving students’ learning self-efficacy and performance in a C programming
course. Computers in Human Behavior, 95, 66–72. https://doi.org/10.1016/j.
chb.2019.01.036

Tabanao, E. S., Rodrigo, M. M. T., & Jadud, M. C. (2011). Predicting at-risk novice Java
programmers through the analysis of online protocols. In Proceedings of the 7th
international workshop on computing education research (pp. 85–92). New York, NY:
ACM. https://doi.org/10.1145/2016911.2016930.

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking in
compulsory education: Towards an agenda for research and practice. Education and
Information Technologies, 20(4), 715–728. https://doi.org/10.1007/s10639-015-
9412-6

Watson, C., Li, F. W. B., & Godwin, J. L. (2013). Predicting performance in an
introductory programming course by logging and analyzing student programming
behaviour. In Proceedings of the 13th international Conference on advanced learning
technologies (ICALT 2013), 15-18 july 2013 (pp. 319–323). Beijing, China: IEEE
Computer Society. https://doi.org/10.1109/ICALT.2013.99.

Watson, C., Li, F. W., & Godwin, J. L. (2014). No tests required: Comparing traditional
and dynamic predictors of programming success. In Proceedings of the 45th ACM
technical symposium on computer science education (pp. 469–474). New York, NY:
ACM. https://doi.org/10.1145/2538862.2538930.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
https://doi.org/10.1145/1118178.1118215

Wolters, C. A., Won, S., & Hussain, M. (2017). Examining the relations of time
management and procrastination within a model of self-regulated learning.
Metacognition and Learning, 12(3), 381–399. https://doi.org/10.1007/s11409-017-
9174-1

Yukselturk, E., & Bulut, S. (2005). Relationships among self-regulated learning
components, motivational beliefs and computer programming achievement in an
online learning environment. Mediterranean Journal of Educational Studies, 10(1),
91–112. https://www.um.edu.mt/library/oar/handle/123456789/19417.

Zimmerman, B. J. (1990). Self-regulated learning and academic achievement: An
overview. Educational Psychologist, 25(1), 3–17. https://doi.org/10.1207/
s15326985ep2501_2

Zimmerman, B. J. (2000). Attaining self-regulation: A social cognitive perspective. In
M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), Handbook of self-regulation (pp.
13–39). Academic Press.

D. Song et al.

https://doi.org/10.18608/jla.2018.53.7
https://doi.org/10.18608/jla.2018.53.7
https://link.springer.com/chapter/10.1007/978-3-319-41769-1_7
https://link.springer.com/chapter/10.1007/978-3-319-41769-1_7
http://refhub.elsevier.com/S0747-5632(21)00068-6/sref32
http://refhub.elsevier.com/S0747-5632(21)00068-6/sref32
http://refhub.elsevier.com/S0747-5632(21)00068-6/sref32
https://psycnet.apa.org/record/1992-97926-004
https://doi.org/10.1007/s40593-019-00177-z
https://doi.org/10.1007/s40593-019-00177-z
https://doi.org/10.1145/2532748.2532754
https://doi.org/10.1016/B978-0-12-634960-3.50023-3
https://doi.org/10.29034/ijmra.v10n1a6
https://doi.org/10.29034/ijmra.v10n1a6
https://doi.org/10.1080/15391523.2020.1767525
https://doi.org/10.1080/15391523.2020.1767525
https://doi.org/10.1016/j.chb.2019.01.036
https://doi.org/10.1016/j.chb.2019.01.036
https://doi.org/10.1145/2016911.2016930
https://doi.org/10.1007/s10639-015-9412-6
https://doi.org/10.1007/s10639-015-9412-6
https://doi.org/10.1109/ICALT.2013.99
https://doi.org/10.1145/2538862.2538930
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1007/s11409-017-9174-1
https://doi.org/10.1007/s11409-017-9174-1
https://www.um.edu.mt/library/oar/handle/123456789/19417
https://doi.org/10.1207/s15326985ep2501_2
https://doi.org/10.1207/s15326985ep2501_2
http://refhub.elsevier.com/S0747-5632(21)00068-6/sref46
http://refhub.elsevier.com/S0747-5632(21)00068-6/sref46
http://refhub.elsevier.com/S0747-5632(21)00068-6/sref46

	Applying computational analysis of novice learners’ computer programming patterns to reveal self-regulated learning, comput ...
	1 Literature review
	1.1 The programming process
	1.2 Towards scaffolding
	1.3 Psychological traits
	1.4 Computational thinking skills
	1.5 Self-regulated learning
	1.6 This study

	2 Methods
	2.1 Participants and the context
	2.2 Data collection
	2.3 Data analysis

	3 Results
	3.1 Initial approach
	3.2 Correlation
	3.3 Regression analysis
	3.4 Computational approach
	3.5 Computational thinking skills
	3.6 MSLQ
	3.7 Grades

	4 Discussion
	4.1 Limitations and future research

	5 Conclusion
	Credit author statement
	Funding sources
	Availability of data and material
	Declaration of competing interest
	References

