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A B S T R A C T   

Educational research on predicting learners’ computer programming performance has yielded practical impli
cations that guide task designs in computer education. There have been attempts to investigate learners’ com
puter programming patterns using high-frequency and automated data collection. This approach can be 
considered as process-based analysis as opposed to outcome-based analysis (i.e., the use of test or exam scores). 
In this process-based approach to investigate learners’ computer programming process, we included two critical 
constructs in our research, self-regulated learning and computational thinking skills. We aimed to identify 
learners’ computer programming patterns in the context that novice students learn a computer programming 
language, Python, in an online coding environment. We examined the relationships between the learners’ coding 
patterns, self-regulated learning, and computational thinking skills. Initially, we adopted a traditional approach 
with the aggregate data of learners’ computer programming behaviors. We then utilized a computational ana
lytics approach to learner performance, self-regulated learning, and computational thinking skills, with ever- 
changing computer programming patterns. In our initial approach, the indicators of aggregate computer pro
gramming data were not associated with learners’ learning performance and computational thinking skills. In the 
computational analysis approach, many indicators revealed significant differences between the identified pat
terns regarding computational thinking skills and self-regulated learning. Recommendations about the use of 
programming log data analysis methods and future scaffolding for computer programming learners are 
addressed.   

Public attention has been drawn to computer programming educa
tion since the 1980s (Soloway et al., 1982). These days, since there are 
many professional areas that require programming knowledge and 
skills, computer programming or coding is considered as a skill needed 
by different types of professionals, not just computer programmers, but 
also engineers, data scientists, economists, and education analysts. Still, 
computer programming education is arguably lagging behind the soci
etal demand for more computer programmers (Giannakos et al., 2017). 

Educational research on predicting learners’ computer programming 
performance has yielded implications that guide the identification of at- 
risk students and learner scaffolding in computer education (e.g., Hall 
et al., 2006; Yukselturk & Bulut, 2005). Many of these efforts focus on 
learning outcomes using quizzes, tests, and exams as a knowledge 

indicator. When we focus on learners’ outcome-based performance, it 
might be challenging to understand their authentic learning process; 
that is, changes in computer programming learning over time. Thus, 
monitoring learners’ programming behaviors to understand their 
genuine learning process is one of the significant research topics in 
computer science education (Azcona et al., 2019; Fields et al., 2016). 

One of the difficulties in this research area is the challenging data 
collection process. Each individual learner needs to have their own 
machine equipped with a coding environment/software, usually in a 
computer lab or at home. Researchers should be able to retrieve 
learners’ programming behaviors from their devices. Online code re
positories, such as GitHub (https://github.com/), have made this data 
collection process more comfortable and manageable. On these online 
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repositories, learners’ codes are stored whenever they upload their 
codes while they are programming. Still, because it all depends on the 
learner’s upload decision, the time points of data collection could be 
different for each student and each task. An alternative way to collect 
learners’ coding data and accommodate the learners’ programming 
process, online coding environments have been used (e.g., Price et al., 
2019). Although online environments might not fully support all func
tions and features of a programming language, it would be enough to 
support novice programmers to learn the basics of coding. 

Another crucial consideration in computer programming education 
research is data analysis methods. Traditionally, instructional methods 
and learners’ pre and posttest scores have been frequently investigated 
in this field (Bishop-Clark et al., 2006). Along with test-based outcome 
measures, there have been attempts to investigate learners’ coding styles 
and patterns (Watson et al., 2013, 2014). Specifically, due to 
high-frequency and automated data collection, novel analysis ap
proaches and techniques have been offered new insights into the com
puter programming learning process and individual learner’s patterns 
and behaviors (e.g., Blikstein et al., 2014; Fields et al., 2016). 

In this study, focusing on a learning process-based analysis approach, 
we aimed to analyze learners’ computer programming patterns. The 
research context includes how novice students learn a computer pro
gramming language, Python, in an online coding environment. We 
investigated the relationships between the learners’ coding patterns and 
their learning performance. In addition, we subsequently aim to 
contribute to the field by adding learners’ self-regulated learning aspects 
and computational thinking skills into the current findings in the 
literature. 

1. Literature review 

Computing education researchers have focused on learners’ com
puter coding processes itself along with their performance (Blikstein 
et al., 2014; Watson et al., 2014). This approach can be considered as 
process-based analysis as opposed to outcome-based analysis. Mostly, 
the process-based analysis includes computational techniques to un
derstand learners’ learning status and monitor learners’ behaviors and 
performance in the field of computer programming education. This 
trend also provides for the exploration of data-driven approaches, where 
the log data of learners’ programming behaviors are available. 

The primary potential of process-based analysis is that it would be 
able to guide and scaffold learners. This is because their ever-changing 
performance and behaviors would be monitored and analyzed without 
having to administer lengthy tests or exams. That is, the learners’ 
computer programming behavior can be an indicator of their learning 
performance and, at the same time, their performance as an artifact. 
Thus, researchers have become increasingly interested in analyzing 
learners’ programming log data as they work on computer programming 
tasks (Fields et al., 2016; Liu et al., 2017). 

1.1. The programming process 

To understand learners’ computer programming process, a series of 
research focuses on learners’ coding mistakes and their time to fix their 
errors (e.g., Altadmri & Brown, 2015, pp. 522–527). Learners’ errors can 
be divided into syntactic (i.e., programming language’s grammatical 
rules) and semantic (i.e., program logic or algorithms) errors. Focusing 
on learners’ programming process data, Carter et al. (2015) suggested 
the Normalized Programming State Model (NPSM), which predicts 
learners’ performance. NPSM includes syntactic and semantic correct
ness of learners’ computer programs at any given point in time. Because 
semantic correctness is challenging to determine precisely, the re
searchers used unknown status; thus, a student’s programming solution 
at a particular time point can be assigned to one of the four states: (1) 
syntactically correct and semantically incorrect, (2) syntactically 
incorrect and semantically incorrect, (3) syntactically correct and 

semantically unknown, and (4) syntactically incorrect and semantically 
unknown. The researchers collected 140 undergraduate students’ pro
gramming log data and their course grades. As a predictor, NPSM was 
compared with other metrics, such as Error Quotient (Jadud, 2006) and 
Watwin Score (Watson et al., 2013), to estimate students’ performance. 
Overall, the linear regression models with the selected time points by the 
researchers revealed that NPSM showed a decent performance when 
predicting students’ individual assignment grades and final grades 
(Carter et al., 2015). As such, learners’ programming process can be 
utilized as a predictor of their performance. 

While this line of research showed a moderate performance when 
predicting learning outcomes, it has a limitation when selecting a spe
cific data point or time point to extract a measure of dynamic and ever- 
changing computer programming behaviors due to the limited number 
of data snapshots. There have been studies to overcome this limitation. 
Blikstein et al. (2014) compared different approaches of analysis density 
– from the regression of aggregate data and further disaggregation of the 
data to identify learners’ computer programming patterns when pre
dicting learning performance. The researchers collected undergraduate 
students’ code snapshots of seven computer programming assignments 
and calculated the size and frequency of code updates. In their regres
sion analysis, the averaged magnitude of the code updates did not show 
a significant relationship with course performance. When they changed 
their approach from the average size to the clusters of different time 
points (four and twelve) per assignment, the results showed a small ef
fect size when predicting course performance. These approaches focused 
solely on the size dimension of students’ codes. Then, the researchers 
added a frequency aspect into their dataset, which is a type of curve as 
opposed to aggregate data. Using standardization and normalization 
processes, they identified six different patterns of code updates, from the 
lowest code change to the greatest change. When they compared these 
six groups with the students’ course performance, there was a significant 
relationship; specifically, the students who changed their programming 
patterns more achieved higher grades in their course (Blikstein et al., 
2014). This analysis approach with fine-grained data shows a clearer 
view of the learners’ coding process than the analysis with aggregate 
data does. The approach has shed light on identifying significant im
plications in computing education. 

1.2. Towards scaffolding 

One of the central reasons why computing education researchers 
have taken great interest in analyzing learners’ coding patterns and their 
relationships with learning performance is to find an optimal way to 
provide scaffolds for the learner. Computing educators desire to design 
an appropriate intervention to meet specific instructional goals when 
teaching computer programming. 

An initial step for designing scaffolds is to identify the difficulty of 
programming tasks. Due to the vast amount of tasks and different types, 
most importantly, the relativity of difficulty depending on each learner, 
researchers have investigated how to detect the difficulty of tasks 
automatically. As an exploratory attempt, Ihantola et al. (2014) exam
ined learner aspects (e.g., prior coding experience) and different metrics 
of code snapshots (e.g., time, lines of code). It was found that the time 
spent on an assignment and the size of coding (e.g., events, keystrokes) 
were significant factors when determining the difficulty of a computer 
coding task. Still, this area needs further investigation. 

There are practical approaches to support learners by giving prompts 
or hints when they are working on computer programming. Price et al. 
(2019) examined the quality of data-driven algorithms that were 
designed to provide code hints for learners while programming. Auto
matically or when a learner requests a hint, these algorithms analyze the 
learner’s current code state and provide a useful example code or 
recommendation for the learner. The researchers invented an automatic 
evaluation framework (called QualityScore) and confirmed its reliability 
using human expert evaluation results. Their framework could 
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differentiate the quality of each code hinting algorithm. 
While these attempts have achieved modest success in supporting 

learners’ performance, we still have challenges contributing to their 
actual learning process. First, the narrow focus on computer program
ming performance (e.g., task’s difficulty, a certain code status at a time 
point) might overlook the crucial aspects of learning, such as learners’ 
motivation and metacognition. Second, the mechanical coding guides 
and hints might pretermit the learners’ ultimate learning goals, such as 
enhancing algorithmic and logical thinking skills. This is the main 
reason for us to include two critical constructs in our research, self- 
regulated learning and computational thinking skills. 

1.3. Psychological traits 

There has been an argument that learners’ psychological or back
ground traits are not directly associated with their computer program
ming behaviors, and psychological indicators might not reflect the 
changes in computer programming and coding patterns (Watson et al., 
2014). We acknowledge the limitations of learners’ psychological in
dicators in relation to their computer programming process. However, it 
can be argued that we should be revisiting the ultimate goals of com
puter education, which is not merely the improvement of computer 
coding skills (Schulte, 2013). One of the essential goals is that computer 
coding can be considered as a learning method to improve computa
tional thinking skills (Voogt et al., 2015). Most importantly, as computer 
coding education extends to non-major students in online learning en
vironments, many of the coding lessons have adopted self-paced 
learning modes. Thus, we argue that learners’ self-regulated learning 
should also be included in the discussion of computer programming 
pattern analysis. 

1.4. Computational thinking skills 

Computational thinking can be defined as it “involves solving 
problems, designing systems, and understanding human behavior, by 
drawing on the concepts fundamental to computer science” (Wing, 
2006, p. 33). Lu and Fletcher (2009) described computational thinking 
as a conceptual way to solve real problems through thinking systemat
ically, correctly, and efficiently about information and tasks. Other 
definitions have their roots in algorithmic thinking, abstraction, 
decomposition, generalization and pattern recognition, data represen
tation (Burbaitė et al., 2018), and even creative and critical thinking 
(Korkmaz et al., 2017). Following these conventional definitions of the 
term, we define computational thinking as thought processes that 
contain knowledge, skills, and attitudes that are based on a computer 
system, which is necessary to thoroughly understand and fully utilize a 
computer system to solve problems. 

There have been sizeable attempts to improve learners’ computa
tional thinking skills (e.g., Atmatzidou & Demetriadis, 2016; Gardeli & 
Vosinakis, 2017). In addition, researchers investigated predictors of 
computational thinking skills. Durak and Saritepeci (2018) investigated 
secondary school students’ computational thinking skills and reported 
that the success indicators of different classes (e.g., math, science, in
formation technologies) predict the participants’ computational 
thinking skills. Still, the relationships between computational thinking 
skills and the computer programming process are under-explored. 

1.5. Self-regulated learning 

A similar under-exploration has been found in the field of self- 
regulated learning research. Self-regulation generally refers to “self- 
generated thoughts, feelings, and actions that are planned and cyclically 
adapted to the attainment of personal goals” (Zimmerman, 2000, p. 14). 
Although the concept of monitoring computer programming behavior 
has a long history (Altadmri & Brown, 2015, pp. 522–527), few studies 
addressed self-regulated learning in relation to computer programming 

behavior. Instead, there have been attempts to increase students’ com
puter programming performance by scaffolding their self-regulated 
learning (e.g., Alharbi et al., 2012; Brito et al., 2011, pp. 1–9; Kumar 
et al., 2005; Pedrosa et al., 2016). In addition, research on relationships 
between self-regulated learning and learning performance has been 
frequently conducted. Chen (2002) examined the relationships between 
MSLQ (Motivated Strategies for Learning Questionnaire; Pintrich & 
DeGroot, 1990) scores and 197 undergraduate students’ learning per
formance on computer concepts. The effort-regulation component of 
MSLQ has a significant relationship with learning performance. Yuk
selturk and Bulut (2005) measured undergraduate 38 students’ 
self-regulated learning using MSLQ and computer programming 
achievements. It was found that among the MSLQ components, 
self-efficacy and self-regulation explained the significant amount of the 
variances of computer programming performance (28.9% and 27.7%, 
respectively). Cigdem (2015) investigated 267 military vocational col
lege students’ self-regulated learning skills and computer programming 
achievements. The self-efficacy component was correlated with pro
gramming achievement (r = 0.181, p < .01). Similar results were found 
in other studies (Bergin et al., 2005; Echeverry et al., 2018). Thus, it 
seems that there is an established relationship between self-regulated 
learning and learning performance in computer education. 

Because self-regulated learners “plan, set goals, organize, self- 
monitor, and self-evaluate at various points during the process of 
acquisition” (Zimmerman, 1990, p. 4), learners’ self-regulated learning 
might be revealed in their computer programing process. A few studies 
were conducted to examine learners’ programming codes and reveal 
their relationship with self-regulated learning. Castellanos et al. (2017) 
collected 205 undergraduate students’ computer programming codes 
and extracted source code metrics of length (e.g., the count of lines) and 
complexity (e.g., amount of loops, amount of if-else clauses), and Hal
stead metrics (e.g., effort, time, difficulty). The results show that the 
length indicator is positively correlated with programming performance 
and self-regulated learning measured through MSLQ. However, the 
changes in learners’ codes and coding patterns were not examined in 
these studies. 

1.6. This study 

The significant learning-related constructs (i.e., self-regulated 
learning and computational thinking skills) were under-investigated in 
terms of the relationship with the learners’ computer programming 
process. In this study, we analyzed a continuous stream of learners’ 
codes to identify their learning patterns, which could possibly be related 
to their self-regulated learning, computational thinking, and learning 
performance. Our primary research question is, “Is the learners’ com
puter programming process related to self-regulated learning, compu
tational thinking skills, and learning performance?” Initially, we were 
interested in traditional approaches to learning performance and 
learning-related constructs (i.e., self-regulated learning and computa
tional thinking skills) with the aggregate data of learners’ computer 
programming. This approach intends to identify a predictive model of 
learner performance. Then, we focused on computational analytics ap
proaches (Song, 2018) to the performance and those constructs with 
ever-changing learner behaviors, patterns, and meaningful trajectories 
in students’ computer programming log data. 

2. Methods 

2.1. Participants and the context 

One hundred thirty-eight students enrolled in a course, Creative 
Extracurricular Activities and Software, which had five sections for se
nior undergraduate students from Teachers College (i.e., preservice 
teachers) at a mid-sized public university in an urban area in South 
Korea. The course is a face-to-face course, which meets one time (a 3-h 
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Table 1 
The correlation table of computer programming indicators and learner factors.   

Computer Programming Performance Computational Thinking Skills MSLQ 

Chosen- 
Task 

Trial- 
Run 

Successful 
Task 

Coding 
Time 

Final Grade Total 1. 
Creativity 

2. Algorithmic 
Thinking 

3. 
Cooperativity 

4. Critical 
Thinking 

5. Problem- 
solving 

Total 1. Self- 
efficacy 

2. Intrinsic 
Value 

3. Test- 
anxiety 
Free 

4. Cognitive 
Strategy 

5. Self- 
regulation 

Chosen-Task 1.00                 
Trial-Run b 

.53 
1.00                

Successful Task b 

.82 

b 

.46 
1.00               

Coding Time b 

.50 

b 

.66 

b 

.40 
1.00              

Final Grade -.15 -.07 -.09 -.10 1.00             
Computational 

Thinking Total 
.07 -.03 -.04 -.15 -.14 1.00            

1. Creativity .12 .09 .02 -.04 -.11 b 

.77 
1.00           

2. Algorithmic 
Thinking 

.08 -.09 -.04 -.19 -.02 b 

.80 

b 

.51 
1.00          

3. Cooperativity -.04 -.05 -.14 .01 -.12 b 

.57 

b 

.36 

b 

.33 
1.00         

4. Critical 
Thinking 

.04 .00 .01 -.11 -.08 b 

.73 

b 

.71 

b 

.57 

a 

.20 
1.00        

5. Problem- 
solving 

.02 -.03 .02 -.11 -.02 b 

.29 
-.09 .05 -.04 -.11 1.00       

MSLQ Total a 

.21 

a 

.24 
.14 .13 -.12 b 

.55 

b 

.65 

b 

.42 

b 

.30 

b 

.61 
-.18 1.00      

1. Self-efficacy a 

.24 
.15 .15 .05 .12 b 

.55 

b 

.59 

b 

.46 
.18 b 

.56 
-.04 b 

.82 
1.00     

2. Intrinsic Value .14 .17 .06 .14 .16 b 

.54 

b 

.56 

b 

.33 

b 

.34 

b 

.47 
.03 b 

.82 

b 

.74 
1.00    

3. Test-anxiety 
Free 

.10 .18 .08 .19 .07 -.19a .05 -.12 -.18 .08 b 

-.40 

a 

.23 
.01 .01 1.00   

4. Cognitive 
Strategy 

.16 a 

.19 
.10 .10 .00 b 

.46 

b 

.54 

b 

.34 

b 

.32 

b 

.45 
-.16 b 

.83 

b 

.49 

b 

.55 
.09 1.00  

5. Self- 
regulation 

.06 .19 .09 .04 .09 b 

.38 

b 

.43 

b 

.33 

a 

.24 

b 

.47 

a 

-.23 

b 

.71 

b 

.40 

b 

.37 
.09 b 

.64 
1.00  

a Correlation is significant at the 0.05 level (2-tailed). 
b Correlation is significant at the 0.01 level (2-tailed). 
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course) a week. Each student was asked to solve programming problems 
during a 15-week semester. Excluding the individuals who did not 
participate in the measurement process of self-regulated learning and 
computational thinking skills, 105 students who completed all computer 
programming tasks and surveys were included in the data analysis. 

The course grades include students’ class participation and different 
types of projects, such as computer coding-related extracurricular ac
tivity design and group discussion projects. The computer coding tasks 
were considered as class participation, and regardless of the successful 
completion of tasks, students received class participation scores when 
they accessed the online computer programming environment with their 
log-in credentials. All 105 subjects in this study participated in all 
computer programming tasks. Therefore, the course grades do not 
directly reveal participants’ computer programming knowledge, skills, 
or task performance, but mainly represent their course achievements in 
their different types of projects, which were still related to computer/ 
software use and computer programming for their future students. 

2.2. Data collection 

We focus exclusively on differences between learners’ successive 
code compilation attempts in the online environment. We instrumented 
the online Python coding environment to capture snapshots of students’ 
codes when they run (i.e., trial-run) their programs. This environment 
collects learners’ codes in real-time when they compile and run their 
codes. The data consisted of programming tasks completed by 105 stu
dents, which include 23,099 times of trial-run. Participants completed 
53 computer programming tasks during a 15-week period. Three tasks 
out of 53 were not used due to the nature of the tasks; for example, the 
first task included the overview of this programming project, and 
another task was a series of quick reviews; thus, 50 tasks were included 
in the data analysis. 

To measure participants’ self-regulated learning, MSLQ (Pintrich & 
DeGroot, 1990) was used. This instrument has been widely adopted to 
measure the levels of self-regulated learning in the computing education 
research field (e.g., Chen, 2002; Sun & Hsu, 2019; Yukselturk & Bulut, 
2005). MSLQ consists of 44 items designed to measure self-efficacy, 
intrinsic value, test anxiety, cognitive strategy use, and self-regulation 

Table 2 
Anova results of clustered groups (N = 105).  

Clustering Factors Measures Clustered Groups F Partial 
η2 

Post Hoc 

a b c d 

Chosen-Task-3 N 57 27 21 –    
MSLQ 
– Self-efficacy 

4.69 (1.10) 4.17 (.93) 4.12 (.89) – 3.643* .067 Not found 

Chosen-Task-4 N 6 51 27 21    
MSLQ 
– Total 

5.40 (.75) 4.83 (.60) 4.63 (.56) 4.60 (.66) 3.252* .088 a > c 
a > d 

MSLQ 
– Self-efficacy 

5.52 (.70) 4.59 (1.10) 4.17 (.93) 4.12 (.89) 4.056* .108 a > c 
a > d 

Trial-Run-3 N 10 19 76 –    
MSLQ 
– Total 

5.26 (.65) 4.89 (.58) 4.67 (.61) – 4.569* .082 a > c 

MSLQ 
– Intrinsic value 

5.17 (1.03) 5.15 (.81) 4.71 (.90) – 2.613* .049 Not found 

MSLQ 
– Cognitive strategy 

5.72 (.64) 5.17 (.61) 5.05 (.72) – 4.102* .074 a > c 

MSLQ 
– Self-regulation 

5.15 (.72) 4.47 (.74) 4.52 (.68) – 3.782* .069 a > b 
a > c 

Time-3 N 18 79 8 –    
CT 
– Total 

4.50 (.54) 4.54 (.65) 3.88 (.66) – 3.965* .072 b > c 

CT 
– Creativity 

5.55 (.73) 5.37 (.69) 4.30 (.76) – 9.699** .160 a > c 
b > c 

CT 
– Algorithmic thinking 

4.21 (1.01) 4.43 (1.15) 3.21 (1.14) – 4.288* .078 b > c 

CT 
– Critical thinking 

4.98 (.99) 4.95 (.99) 3.95 (.86) – 3.866* .070 a > c 
b > c 

MSLQ 
– Total 

5.10 (.66) 4.75 (.58) 4.14 (.64) – 7.416* .127 a > c 
b > c 

MSLQ 
– Self-efficacy 

4.80 (1.04) 4.47 (1.00) 3.39 (.92) – 5.575* .099 a > c 
b > c 

MSLQ 
– Cognitive strategy 

5.44 (.59) 5.14 (.69) 4.39 (.81) – 6.486* .113 a > c 
b > c 

MSLQ 
– Self-regulation 

5.01 (.80) 4.55 (.64) 3.82 (.58) – 9.010** .150 a > b 
a > c 
b > c 

Time-4 N 19 8 72 6    
CT 
– Creativity 

5.48 (.73) 5.33 (.86) 5.36 (.70) 4.34 (.88) 4.077* .108 a > c 
a > d 

MSLQ 
– Total 

5.01 (.66) 4.89 (.86) 4.74 (.56) 4.14 (.70) 3.203* .087 a > d 

MSLQ 
– Cognitive strategy 

5.40 (.57) 5.18 (.93) 5.12 (.69) 4.41 (.82) 3.066* .083 a > d 

MSLQ 
– Self-regulation 

4.84 (.79) 4.69 (1.05) 4.54 (.63) 3.94 (.60) 2.711* .075 Not found 

Success-3 N 35 43 27 –    
Grades 89.49 (2.93) 89.37 (3.14) 87.48 (4.13) – 3.366* .062 Not found 

*p < .05. 
**p < .001. 
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on a 7-point scale, ranging from 1 (not at all true of me) to 7 (very true of 
me). In addition, to measure participants’ computational thinking skills, 
we adopted CTS (Computational Thinking Scales) (Korkmaz et al., 
2017), which has been used in recent computer education research (e.g., 
Doleck et al., 2017; Durak & Saritepeci, 2018). Finally, to measure the 
learners’ course performance, their final grades were used. 

2.3. Data analysis 

We conducted a series of analyses adopting a traditional approach. 
The learners’ coding pattern indicators are the number of chosen tasks, 
overall code-run trials, average code-run trials per task, the number of 
successful tasks, and time spent per task. Although the participation in 
the coding tasks (i.e., logging in each task) was the course requirement, 
trial-run attempts or successful completion of tasks were not graded. 
Thus, the participants were able to focus on a specific task on their own 
or skip some tasks without any restriction. This is the reason for having 
the number of chosen tasks as their coding pattern indicator. For the 
same reason, overall code-run trials or time spent per task varied 
depending on students’ coding behaviors, styles, and patterns. We 
analyzed the relationships between these coding pattern indicators and 
learner constructs (i.e., self-regulated learning, computational thinking, 
and learning performance). Using computational analysis, we demon
strate learners’ programming patterns. Instead of combining or aver
aging indicators, we utilized computational techniques to identify the 
patterns of learners’ coding behaviors and find relationships between 
the patterns and learner constructs. In this approach, data can represent 
each learner’s trial-run attempt at different points in time as they 
progress towards the goal of each programming task. 

3. Results 

3.1. Initial approach 

In the initial analysis, we included the number of chosen tasks 
(Chosen-Task), overall code-run trials (Trial-Run), the number of suc
cessful tasks (Successful Task), and time spent for tasks (Coding Time). 
We analyzed the relationships between these coding pattern indicators 
and learner constructs (i.e., self-regulated learning, computational 
thinking, and learning performance). 

3.2. Correlation 

We calculated correlation coefficients of all relevant variables (see 
Table 1). All four indicators of computer coding were not associated 
with learners’ grades or computational thinking skills. Two indicators, 
Chosen-Task (r = 0.21) and Trial-Run (r = 0.24) were correlated with 
MSLQ (both ps < .05). Specifically, Chosen-Task was positively corre
lated with self-efficacy (r = 0.24, p < .05), and Trial-Run was positively 
related with cognitive strategy (r = 0.19, p < .05). 

3.3. Regression analysis 

We conducted a series of regression analyses to identify the re
lationships between computer programming indicators and learner 
factors. Similar to the correlation results, when learners’ final grades 
and computational thinking levels were the outcome variables, the 
prediction power of four coding indicators were not statistically mean
ingful, F(4,100) = 0.72, p = .58, R2 = 0.028, F(4,100) = 2.28, p = .07, 
R2 = 0.084, respectively. 

When MSLQ was the outcome variable, the regression models pre
dicted the dependent variable significantly well. We tested different 
combinations of four coding indicators as independent variables, the 
Trial-Run indicator showed a greater prediction significance, F(1,103) 
= 6.35, p = .013, R2 = 0.058, β = 0.0009, intercept = 4.58. Another 
model is the combination of Chosen-Task and Trial-Run, F(2,102) =

3.66, p = .029, R2 = 0.067, MSLQ is equal to 4.44 + .01 (Chosen-Task) +
0.0007 (Trial-Run). However, when all four coding indicators were 
predictors, the prediction was not significant, F(4,100) = 2.04, p = .09, 
R2 = 0.075. 

3.4. Computational approach 

To have a more in-depth look at the learners’ computer coding be
haviors, we analyzed their trial-run log data without combining or 
aggregating indicators. The first indicator is Chosen-Task, the second 
Trial-Run, the third Time, and the fourth Success. Each indicator of a 
participant could be represented as a multidimensional vector. For 
example, when a learner tested their Python codes (i.e., trial-run) 10 
times in Task 1, 12 times in Task 2, 9 times in Task 3, …and 5 times in 
Task 50, the vector of Trial-Run for the student would be “(10, 12, 9, …, 
5).” We used K-Means as a clustering method. We added the K-value 
after the indicator name; for example, when we used Chosen-Task as an 
indicator, and the K-value is 3, then the name was Chosen-Task-3. Thus, 
Chosen-Task-4 means we categorized learners’ chosen-task indicators 
into 4 groups (i.e., clusters). Among these clustering processes, three 
attempts were not included in further analyses due to the lack of cases in 
a cluster. For example, in Trial-Run-4 (i.e., four clusters were identified 
using the trail-run indicators by the algorithm), the case numbers of 
each cluster are 86, 13, 5, and 1. Because the Trial-Run-5 and Time-5 
had the same issue, further analyses did not proceed with these clusters. 

3.5. Computational thinking skills 

Most of the clustering approaches were not able to find significant 
differences between groups with regard to computational thinking skills 
– Chosen-Task-3: F(2,102) = 0.926, p = .400, Chosen-Task-4: F(3,101) 
= 1.772, p = .157, Trial-Run-3: F(2,102) = 0.427, p = .653, Success-3: F 
(2,102) = 2.809, p = .065, Success-4: F(3,101) = 1.961, p = .125, and 
Success-5, F(4,100) = 1.610, p = .178. However, the Time indicator 
found significant differences between groups in computational thinking 
skills (see Table 2). Time-3 showed a significant difference between 
three clusters, F(2,102) = 3.965, p = .022, Partial η2 = 0.072, specif
ically, Creativity: F = 9.699, p < .001, Partial η2 = 0.160, Algorithmic 
Thinking Skills: F(2,102) = 4.288, p = .016, Partial η2 = 0.078, and 
Critical Thinking F(2,102) = 3.866, p = .024, Partial η2 = 0.070. 
Although Time-4 did not show a difference between four clusters in 
Computational Thinking Skills, F(3,101) = 1.420, p = .241, there was a 
significant difference only in the Creativity dimension, F(3,101) =
4.077, p = .009, Partial η2 = 0.108. 

3.6. MSLQ 

As shown in Table 2, many indicators showed significant differences 
between clusters regarding MSLQ. Chosen-Task-4 revealed a statistically 
significant difference between four clusters in MSLQ Total, F(3,101) =
3.252, p = .025, Partial η2 = 0.088, specifically, Self-efficacy: F(3,101) 
= 4.056, p = .009, Partial η2 = 0.108. Although Chosen-Task-3 did not 
show a significant difference in MSLQ Total, F(2,102) = 2.473, p = .089, 
there was a significant difference between three clusters in Self-efficacy, 
F(2,102) = 3.643, p = .030, Partial η2 = 0.067. However, the post-hoc 
test was not able to reveal any meaningful differences between each 
pair of groups. This conflict is discussed in the limitation section. 

Trial-Run-3 showed a difference in MSLQ, F(2,102) = 4.569, p =
.013, Partial η2 = 0.082, specifically, Cognitive Strategy: F(2,102) =
4.102, p = .019, Partial η2 = 0.074 and Self-regulation: F(2,102) =
3.782, p = .026, Partial η2 = 0.069. 

The Time indicator also revealed a difference in MSLQ, Time-3: F 
(2,102) = 7.416, p = .001, Partial η2 = 0.127. Specifically, Self-efficacy: 
F(2,102) = 5.575 p = .005, Partial η2 = 0.099, Cognitive Strategy: F 
(2,102) = 6.486, p = .002, Partial η2 = 0.113, and Self-regulation: F 
(2,102) = 9.010, p < .001, Partial η2 = 0.150. In addition, Time-4 
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showed a difference between four clusters in MSLQ Total, F(3,101) =
3.203, p = .026, Partial η2 = 0.087. Specifically, Cognitive Strategy: F 
(3,101) = 3.066, p = .031, Partial η2 = 0.083, and Self-regulation: F 
(3,101) = 2.711, p = .049, Partial η2 = 0.075. Because this Self- 
regulation component analysis showed a violation of homogeneity 
assumption (Levene Statistics = 3.212, p = .026), the Games-Howell was 
used for the post-hoc test. 

The Success indicator did not reveal any meaningful differences, 
Success-3: F(2,102) = 0.228, p = .796, Success-4: F(3,101) = 0.171, p =
.916, Success-5: F(4,100) = 0.578, p = .680. 

3.7. Grades 

While most of the clustered groups did not show any statistically 
significant differences in grades, one meaningful case was found. When 
the data were clustered by the participants’ successful coding tasks into 
three groups, there was a significant grade difference between groups, F 
(2,102) = 3.366, p = .038, Partial η2 = 0.062. However, the post-hoc test 
was not able to reveal any meaningful differences between each pair of 
groups. This is also addressed in the limitation section. 

4. Discussion 

In this study, we used a self-paced online learning environment to 
capture snapshots of students’ code during Python programming tasks 
for the extracurricular activities and software course in a teacher edu
cation program. We used both aggregate and disaggregate data ap
proaches to learners’ computer programming patterns to identify the 
relationships with self-regulated learning, computational learning skills, 
and learning performance. The analysis of averaged indicators did not 
reveal any significant associations except for the Trial-Run measure, 
which showed its relationship with MSLQ scores. However, program
ming patterns, when a computational technique (i.e., k-means) utilized, 
revealed their relationships with self-regulated learning, computational 
learning skills, and learning performance. This is partially consistent 
with previous studies (e.g., Cigdem, 2015; Durak & Saritepeci, 2018; 
Yukselturk & Bulut; 2005) in that computer programming learning is 
related to self-regulated learning and computational thinking skills. 

Since we have known that the time management aspect is closely 
related to self-regulated learning (Wolters et al., 2017), it is an inter
esting finding that the time spending patterns on specific coding tasks 
were related to learners’ computational thinking skills, specifically the 
creativity dimension. It should be noted that this does not mean the total 
amount of time is related to creativity in computational thinking, as 
shown in our correlation and regression analyses. Instead, students with 
higher levels of creativity in computational thinking skills showed a 
specific pattern of time investment on certain tasks. The time parameter 
and temporal information could be an essential factor in the learning 
process, which is fundamentally ever-changing. Although there was a 
report that time management could be significant in computing educa
tion (Chaudhary et al., 2016), the relationship between computational 
thinking skills and time management has been under-explored. This 
requires further investigation. 

Three aspects of coding behaviors (i.e., Chosen-Task, Trial-Run, and 
Time) were categorized into different groups that showed different 
levels of self-regulated learning. This means that the patterns of task 
selection, trial times on specific tasks, and time spent on specific tasks 
might be indicators of self-regulated learning. Since we were not able to 
intentionally design programming tasks with different characteristics, 
future research is needed to differentiate the features of each task so the 
learners’ coding patterns on which task reveal the different levels of self- 
regulated learning. 

Although limited, the patterns of successful tasks revealed the dif
ferences in course performance. Learners who showed a specific pattern 
of successful coding tasks achieved higher course grades than the other 
pattern groups. Still, the patterns identified by the computational 

algorithm were not labeled, characterized, or explained by the re
searchers due to the complexity. The success of a task did not influence 
the course grade because the coding tasks were the course participation 
components, and any students who logged in the online coding envi
ronment received the same points. Thus, it is quite interesting that 
higher performers showed a specific successful completion pattern. Be
sides, the success patterns did not reveal any differences in self-regulated 
learning or computational thinking skills, and the total number of suc
cessful tasks did not show any relationships with learning performance. 
We suspect that there might be another construct to explain this result, 
such as selective persistence (Prenzel, 1992). This warrants further 
research. 

Overall, our investigation of the coding process is consistent with 
Castellanos et al. (2017), which showed the coding behavior (specif
ically, the length of codes) was associated with self-regulated learning. 
The difference between their results and ours is that we focused more on 
coding as a process rather than codes as a product. Our purpose is not to 
show any superiorities of an analysis approach over the other, but rather 
to reveal that a fine-grained data analysis might uncover the previously 
concealed relationships of learners’ learning process and patterns with 
psychological indicators and learning performance. The fine-grained 
data could maintain learners’ detailed trajectories throughout a 
learning activity. The use of fine-grained data with the time parameter 
to capture ever-changing learning patterns could offer novel insights 
into learning analysis. More importantly, we aimed to produce, although 
exploratory, a piece of theoretical evidence for the relationship of 
computer coding patterns with self-regulated learning and computa
tional thinking skills. The implication of this study is that averaged 
predictors of learners’ computer programming processes are less effec
tive at reflecting learning performance, self-regulated learning, and 
computational thinking skills of the learners. Instead, the 
non-aggregated process-based indicators offer a clearer image to reveal 
those learner-side measures. It would be beneficial to utilize constantly 
shifting data of the learning process and discover any hidden patterns in 
the data (Blikstein et al., 2014), revealing relationships with existing 
constructs that education researchers have built. By collecting a stream 
of coding process data in an online coding program, we create oppor
tunities to continuously assess their learning processes and progress. 

If we identified clearer relationships between learners’ coding be
haviors/patterns and psychological constructs in future research, further 
investigations would demonstrate how these relationships can be used 
to provide proper scaffolds for the learners considering not only the 
better coding process and performance but also their current status of 
self-regulation and computational thinking skills. For example, these 
relationships would contribute to the field of programming hint, which 
has a growing number of algorithms with data-driven approaches (Price 
et al., 2019), such as supporting at-risk students in computer education 
programs (Tabanao et al., 2011). Our future intention is to take one step 
closer to providing individualized scaffolds that take into account not 
only the learner’s codes but also learners’ motivation, metacognition, 
cognitive strategy, algorithmic thinking skills. When scaffolding, the 
system not only provides a guide for the next coding step but also en
courages learners’ self-regulation process and facilitates their compu
tational thinking. Automatic scaffolding should be influenced by 
learner-dependent psychological factors (Song & Kim, 2020). This is 
directly related to the computer education field of behavioral regulation, 
which highlights the importance of encouraging students’ meta
cognitive activities (see Mangaroska et al., 2018). This field is the area 
where even expert human tutors might not be easily scaffolding com
puter programming learners. 

4.1. Limitations and future research 

Our work has important limitations. First, our narrow focus on the 
relationship with self-regulated learning and computational thinking 
skills might overlook the programming content; that is, semantic and 
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syntactic aspects of learners’ code. Different types of programming tasks 
need to be designed to examine learners’ code contents in future studies. 
Second, the difference in the patterns of coding size changes that other 
researchers suggested (e.g., Blikstein et al., 2014) was not analyzed, and 
their predictive power was not tested in this study. The reason for not 
selecting the size approach was that most of the tasks were novice-levels, 
so we considered that the overall size of each task was not meaningful. 
More intentionally designed tasks should be studied in future research. 
Third, learners’ codes were not analyzed qualitatively due to the 
massive amount of data. Still, we acknowledge that there should be 
sufficient information in their codes and qualitative approaches would 
reveal the original patterns of learners’ programming behavior. More 
efficient and feasible methods for qualitative analysis of learners’ 
computer codes are needed for future research. Last, the non-significant 
results of post-hoc tests might be caused by the small effect sizes and the 
uneven cases of each cluster. Empirical studies with a larger sample 
would be required. 

5. Conclusion 

This study differs from previous computer programming education 
research in three key ways. First, we presented a process model for 
organizing the learners’ coding process. Second, we expanded the focus 
of the coding process to include computational thinking skills and self- 
regulated learning. Finally, we identified the relationships between 
learners’ psychological constructs and the coding process. 
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Castellanos, H., Restrepo-Calle, F., González, F. A., & Echeverry, J. J. R. (2017). 
Understanding the relationships between self-regulated learning and students source 
code in a computer programming course. In Proceedings of the 2017 IEEE frontiers in 
education conference (FIE), 18-21 Oct. 20. Indianapolis: IEEE. https://doi.org/ 
10.1109/FIE.2017.8190467.  

Chaudhary, V., Agrawal, V., Sureka, P., & Sureka, A. (2016). An experience report on 
teaching programming and computational thinking to elementary level children 
using lego robotics education kit. In Proceedings of the 2016 IEEE eighth international 
conference on technology for education (T4E) (pp. 38–41). IEEE. https://doi.org/ 
10.1109/T4E.2016.016.  

Chen, C. S. (2002). Self-regulated learning strategies and achievement in an introduction 
to information systems course. Information Technology, Learning, and Performance 
Journal, 20(1), 11–25. https://pdfs.semanticscholar.org/d92f/d0d0207191f 
7806852f93c3f37d61a4438eb.pdf. 

Cigdem, H. (2015). How does self-regulation affect computer-programming achievement 
in a blended context? Contemporary Educational Technology, 6(1), 19–37. https://doi. 
org/10.30935/cedtech/6137 

Doleck, T., Bazelais, P., Lemay, D. J., Saxena, A., & Basnet, R. B. (2017). Algorithmic 
thinking, cooperativity, creativity, critical thinking, and problem solving: Exploring 
the relationship between computational thinking skills and academic performance. 
Journal of Computers in Education, 4(4), 355–369. https://doi.org/10.1007/s40692- 
017-0090-9 

Durak, H. Y., & Saritepeci, M. (2018). Analysis of the relation between computational 
thinking skills and various variables with the structural equation model. Computers & 
Education, 116, 191–202. https://doi.org/10.1016/j.compedu.2017.09.004 

Echeverry, J. J. R., Rosales-Castro, L. F., Restrepo-Calle, F., & González, F. A. (2018). 
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